Variational Assimilation of Remote Sensing Data for Land Surface Hydrologic Applications

نویسندگان

  • Rolf H. Reichle
  • Dara Entekhabi
چکیده

Soil moisture plays a major role in the global hydrologic cycle. Most importantly, soil moisture controls the partitioning of available energy at the land surface into latent and sensible heat fluxes. We investigate the feasibility of estimating large-scale soil moisture profiles and related land surface variables from low-frequency (L-band) passive microwave remote sensing observations using weak-constraint variational data assimilation. We extend the iterated indirect representer method, which is based on the adjoint of the hydrologic model, to suit our application. The four-dimensional (space and time) data assimilation algorithm takes into account model and measurement uncertainties and provides optimal estimates by implicitly propagating the full error covariances. Explicit expressions for the posterior error covariances are also derived. We achieve a dynamically consistent interpolation and extrapolation of the remote sensing data in space and time, or equivalently, a continuous update of the model predictions from the data. Our hydrologic model of water and energy exchange at the land surface is expressly designed for data assimilation. It captures the key physical processes while remaining computationally efficient. The assimilation algorithm is tested with a series of experiments using synthetically generated system and measurement noise. In a realistic environment based on the Southern Great Plains 1997 (SGP97) hydrology experiment, we assess the performance of the algorithm under ideal and nonideal assimilation conditions. Specifically, we address five topics which are crucial to the design of an operational soil moisture assimilation system. (1) We show that soil moisture can be satisfactorily estimated at scales finer than the resolution of the brightness images (downscaling), provided sufficiently accurate fine-scale model inputs are available. (2) The satellite repeat cycle should be shorter than the average interstorm period. (3) The loss of optimality by using shorter assimilation intervals is offset by a substantial gain in computational efficiency. (4) Soil moisture can be satisfactorily estimated even if quantitative precipitation data are not available. (5) The assimilation algorithm is only weakly sensitive to inaccurate specification of the soil hydraulic properties. In summary, we demonstrate the feasibility of large-scale land surface data assimilation from passive microwave observations. Thesis Supervisor: Dennis B. McLaughlin Title: H.M. King Bhumibol Professor of Water Resource Management Thesis Supervisor and Committee Chair: Dara Entekhabi Title: Associate Professor of Civil and Environmental Engineering

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data assimilation methods in the Earth sciences

Although remote sensing data are often plentiful, they do not usually satisfy the users’ needs directly. Data assimilation is required to extract information about geophysical fields of interest from the remote sensing observations and to make the data more accessible to users. Remote sensing may provide, for example, measurements of surface soil moisture, snow water equivalent, snow cover, or ...

متن کامل

Variational data assimilation of microwave radiobrightness observations for land surface hydrology applications

Our ability to accurately describe large-scale variations in soil moisture is severely restricted by process uncertainty and the limited availability of appropriate soil moisture data. Remotely sensed microwave radiobrightness observations can cover large scales but have limited resolution and are only indirectly related to the hydrologic variables of interest. We describe a four-dimensional (4...

متن کامل

Hydrologic Remote Sensing and Land Surface Data Assimilation

Accurate, reliable and skillful forecasting of key environmental variables such as soil moisture and snow are of paramount importance due to their strong influence on many water resources applications including flood control, agricultural production and effective water resources management which collectively control the behavior of the climate system. Soil moisture is a key state variable in la...

متن کامل

Methods and examples for remote sensing data assimilation in land surface process modeling

Land surface process models describe the energy, water, carbon, and nutrient fluxes on a local to regional scale using a set of environmental land surface parameters and variables. They need time series of spatially distributed inputs to account for the large spatial and temporal variability of land surface processes. In principle many of these inputs can be derived through remote sensing using...

متن کامل

Atmosphere-Land Coupled Data Assimilation by Using Satellite Microwave Radiometers

INTRODUCTION Soil moisture, snow and precipitation are key parameters in numerous environmental studies, including hydrology, meteorology, and agriculture. They play important roles in the interactions between the land surface and the atmosphere, as well as the partitioning of precipitation into runoff and ground water storage and absorbed solar energy into sensible and latent heat flues at the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013